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Abstract. The recent Time-Quality Binarization Competitions have
shown that no single binarization algorithm is good for all kinds of doc-
ument images and that the time elapsed in binarization varies widely
between algorithms and also depends on the document features. On the
other hand, document applications for portable devices have space and
processing limitations that allow to implement only the “best” algorithm.
This paper presents the methodology and assesses the time-quality per-
formance of 61 binarization algorithms to choose the most time-quality
efficient one, under two criteria.

Keywords: Smartphone applets - Document binarization - DIB-dataset
- Photographed Documents - Binarization competitions.

1 Introduction

Today, half of the population of the world has a smartphone with a built-in
digital camera, according with the June 2021 report from the consulting firm
Strategy Analytics*. Such devices are incredibly versatile and even low cost ones
have good quality cameras that allow digitizing document images, that are widely
used in a large number of everyday situations that in a recent past photocopying
was used.

Binarization, or thresholding, is the name given to the conversion process of a
color image into its black-and-white (or monochromatic) version. Binary images
make most documents more readable and save toner for printing. save storage
space [47], communication bandwidth. Binarization also works as a file compres-
sion strategy, as the size of binary images is often orders of magnitudes smaller
than the original gray or color images. Thresholding is a key preprocessing step
for document OCR, classification and indexing. The recent Time-Quality Bi-
narization Competitions [30,25,27,31] have shown that no single binarization

* https://www.strategyanalytics.com/
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algorithm is good for all kinds of document images and that the time elapsed in
binarization varies widely between algorithms and also depends on the document
features.

Portable devices are limited in space and users are eager for outputs. Thus,
being able to pinpoint which algorithm would fast provide a good quality binary
image, capable of being embedded in applications in a certain smartphone model
is a valuable information. This paper assesses 61 binarization algorithms
to choose the one that presents the best time-quality trade-off to be
implemented in embedded applications in smartphones. The universe
of the tested algorithms is formed by “classical” and recently published bina-
rization algorithms: Akbari; [1], Akbariy [1], Akbariz [1], Bataineh [3], Bernsen
[5], Bradley [6], Calvo-Z [7], CLD [41], CNW [40], dSLR [46], DeepOtsu (SL)
[12], DiegoPavan (DP) [50], DilatedUNet [27], DocDLink [57], Doc-UNet (WX)
[30], ElisaTV [2], Erginag [49], Erginay, [18], Gattal [9], Gosh [4], Howe [13],
Huang [14], HuangBCD (AH;) [28], HuangUnet (AH,) [28], iNICK (KS;) [42],
Intermodes [38], ISauvola [11], IsoData [53], Jia-Shi [15], Johannsen [16], KSW [17],
Li-Tam [22], Lu-Su [32], Mean [10], Mello-Lins [34], Michalak [27], Michalak21,
(MO;) [28], Michalak215 (MOg3) [28], Michalak21s (MOs) [28], MinError [20],
Moments [52], Niblack [36], Nick [19], Otsu [37], Percentile [8], Pun [39], RenyEn-
tropy [43], Sauvola [44], Shanbhag [45], Singh [48], Su-Lu [51], Triangle [56],
Vahid (RNB) [28], WAN [35], Wolf [54], Wu-Lu [33], Yen-CC [55], YinYang [27],
YinYang21 (JB), [27], Yuleny [30].

The test set used for such an assessment is part of the IAPR DIB dataset
(https://dib.cin.ufpe.br) including “real-world” offset, laser, and deskjet printed
text documents. Such documents were photographed at two different places,
with four different models of smartphones widely used today, with their in-built
strobe flash on and off. The methodology presented here may be used to find
the most suitable algorithm for other devices, or the same smartphone models
under different setups.

2 Quality-Time Evaluation Methods

Two quality measures were used to evaluate the performance of the 61 bina-
rization algorithms assessed here. The first one, made use of Google Vision to
perform Optical Character Recognition (OCR) on the documents and applies
the Levenshtein distance ([Lg;s¢]) to the correct number of characters in the
document transcription (# char). The error rate is calculated as:

([Laist) = (#char — Lg;st)/#char.) (1)

The second quality measure, P,... , compares the proportion between the
black-to-white pixels in the scanned and photographed binary documents [24].
One expects that although the photographed and scanned documents have dif-
ferent resolutions, the number of black pixels in a photographed and its scanned
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version of a document document will be balanced, somehow. Thus,

abs(PWGT — PWbin)
PWer

([Perr] = 100 (2)
where PWgr and PWy;,, are the proportion of white pixels in the ground-truth
and the binarized image, respectively, and abs() obtains the absolute value of
the difference. The quality evaluation was done in the context of each measure
separately. They were ranked using the mean value for the whole dataset.

The processing time evaluation provides the order of magnitude of the time
elapsed for binarizing the whole datasets. The training-times for the Al-based al-
gorithms were not computed. The processing device was CPU: Intel(R) Core(TM)
i7-10750H CPU @ 2.60GHz, with 32GB RAM and a GPU GeForce GTX 1650
4GB The algorithms were implemented using two operating systems and differ-
ent programming languages, for specific hardware platforms such as GPUs:

— Windows 10 (version 1909), Matlab: Akbari;, Akbariy, Akbariz, CLD,
CNW, ElisaTV, Ergina-Global, Ergina-Local, Gattal, Ghosh, Howe, iNICK,
Jia-Shi, Lu-Su, Michalak, MOy, MOy, MOg3

— Linux Pop!_OS 20.10:

e C++ (GCC 10.3): Bataineh, Bernsen, ISauvola, Niblack, Nick, Otsu,
Sauvola, Singh, Su-Lu, WAN, Wolf

e Python 2.7: SL

e Java 14: YinYang, JB, Bradley, daSilva-Lins-Rocha, Huang, Intermodes,
IsoData, Johannsen-Bille, Kapur-SW, Li-Tam, Mean, Mello-Lins, Min-
Error, Minimum, Moments, Percentile, Pun, RenyEntropy, Shanbhag,
Triangle, Wu-Lu, Yen

e Python 3.6: AH;, AH,, Calvo-Z, DP, DilatedUNet, DocDLink, WX,
RNB, Yuleny

The algorithms were executed on different operating systems (OS), but on the
same hardware. For those that could be executed on both OS types, the process-
ing times for each OS was measured and no significant difference was noticed.
This behaviour was also observed and reported in [27]. The mean processing
time was used in the analysis. The primary purpose is to provide the order of
magnitude time of the processing time elapsed. The SL algorithm (DeepOtsu)
would take weeks to process the images using a CPU; therefore, a NVIDIA Tesla
K80 has been used to accelerate the processing. However, an approximation of
the CPU processing time is used as reference in order to compare with the other
algorithms, each of which was processed using a CPU on the specific platform.

3 Test Set

Document images acquired using mobile phones are harder to binarize if com-
pared with the use of scanners. The distance between the document and the cap-
turing device and the illumination may vary significantly. Other external light
sources and the activation or not of the strobe flash may interfere in the quality
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Canying out our plan, we check cach step. Checking
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you also PRoVE.that it i correct?

Trying (0 prove formally what is seen incuitively and
o sec intuitively what is proved formally is an invigor-
ating mental exercise. Unforumately, in the classroom
there is not always enough time for it. The cxample,
discused in sections 12 and 14, is typical in this respect.

Condition is a principal part of a “problem to find”
Sce PROBLEMS TO FIND, PROBLEMS TO FROVE, 3. See also

Fig. 1. Samples of the images clustered by device (Motorola G9 Plus, iPhone SE 2,
Samsung A10S, Samsung S20) and set-up of the strobe flash (top-line “off”, bottom-
line “on”).

of the obtained image. The kind of document images used here are representative
of the kind of images that ordinary people take photos of and correspond to the
kinds of documents people often used to take photocopies a few years ago. Typ-
ically, such documents are text ones with a plain background, printed in either
plain white printer or recycled paper. The test set used here, samples of which
are presented in Figure 1, is formed by nine documents offset printed book pages,
and deskjet and laser printed documents. Very seldom, people take a photo of a
historic documents. If that is the case, such a document image tends not to be
binarized in the camera itself as historic documents tend to have a darker back-
ground, some show back-to-front interference [29] and physical noises [23]. Such
images are part of The IAPR DIB-dataset, which encompasses nine documents
obtained from four different models of portable cell-phones, widely used today.
Besides the device model, the documents in this set were clustered according to
having the in-built strobe-flash set as “on” or “off”.
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4 Results

Four models of smartphones of different manufacturers were used is this study.
The choice of the devices was made to cover mid-price range models of different

Table 1. Summary of specifications of the front camera of the devices studied

Moto G9 iPhone SE2 Galaxy S20 Galaxy A10S

Megapixels 48 12 64 13

Flash Dual LED Quad-LED Dual LED Dual LED
Aperture /1.8 /1.8 /2.0 1.8
Sensor size 1/2 inch - 1/1.72 inch -

Pixel size 0.8 m - 0.8 pym -

manufacturers in such a way to be representative of the smartphones used by the
majority of the population. The technical specifications of their front cameras
are presented in Table 1.

In this paper, for each device tested, three algorithms will be selected:

— (i) the best binarization algorithm for printing, screen reading, or less storage
space or claims for less communication bandwidth for transmission.

— (ii) the best for OCR processing binarization algorithm.

— (iii) the overall “winner” - the algorithm that provides the best quality-time
trade-off for any sort of binarization application.

The developers of applications for other device models should use the method-
ology presented here to make a criterious choice of which algorithm(s) to use.

4.1 Motorola Moto G9

The Moto G9 device used in this assessment is an Android 10 smartphone de-
veloped by Motorola Mobility®, a subsidiary of Lenovo. It was first released in
August 2020. The analysis of the data presented on table 2 for the document im-
ages in the testset acquired with this smartphone, shows that several algorithms
perform very well in terms of the quality of the generated monochromatic im-
age. Two of them compete for the podium in analysing the general quality time
trade-off: Michalack [27] and MO, [25], both developed by Hubert Michalak and
Krzysztof Okarma at the West Pomeranian University of Technology, Poland.

— (i) best for printing: MOj: the difference of the P, with flash on and off
makes it slightly better than Michalak, as both are top fast among the top
quality algorithms.

— (ii) best for OCR: Michalak

— (iii) global “winner”: Michalak: it is just as fast as MOy, but has better
quality measures than MO;.

® https://www.motorola.com/we/compare-smartphones
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Table 2. Best binarization algorithms using Motorola G9 Plus

Motolora G9 Plus

OFF ON
# Alg. P.rr Time (s) Alg. Perr Time (s)
1 Michalak 0.92 0.06 KS1 0.55 3.42
2 MOs; 0.94 1.41 MO, 0.59 0.05
3 Bradley 0.95 0.41 Gosh 0.70 145.16
4 MO, 0.97 0.06 Yasin 0.74 1.75
5 ElisaTV 1.06 11.59  ElisaTV 0.83 11.2
6 Yasin 1.14 2.03 MOs; 0.86 1.34
7 DilatedUNet 1.17 188.27  Bradley 0.91 0.40
8 MO, 1.19 3.09 Michalak 0.97 0.05
9 Gosh 1.24 143.09 Singh 1.00 0.44
10 WX 1.25 281.66 Nick 1.12 0.21
11 KS 1.42 3.80 Su-Lu 1.22 2.17
12 DocDLink 1.43 300.18 DilatedUNet 1.24 187.73
13 KS; 1.68 3.72 Wolf 1.32 0.29
14 1ISauvola 1.72 0.53 WX 1.64 281.16
15 Su-Lu 1.74 2.19 MO, 1.65 3.00
# Alg. [Lgist] Time (s) Alg. [Lgist) Time (s)
1 KS, 0.98 3.80 AH, 0.98 398.98
2 MO; 0.98 1.41 AH, 0.98 91.2
3 Bradley 0.98 0.41 KS, 0.98 3.69
4  Michalak 0.98 0.06 MOs3 0.98 1.34
5 RNB 0.98 46.17 SL 0.98 13666.25
6 WAN 0.98 1.36 Michalak 0.98 0.05
7  ISauvola 0.97 0.53  Bradley 0.98 0.40
8 MO, 0.97 3.09 RNB 0.98 45.58
9 MO, 0.97 0.06 WAN 0.97 1.35
10 ElisaTV 0.97 11.59 MO, 0.97 3.00
11 JB 0.97 1.79 JB 0.97 1.73
12 KS; 0.97 3.72 KS; 0.97 3.42
13 Gosh 0.97 143.09 MO, 0.97 0.05
14 YinYang 0.97 2.08 ISauvola 0.97 0.52
15 Bataineh 0.97 0.16 ElisaTV 0.97 11.2

Figure 2 presents the results of the binarization produced by the top two algo-
rithms for two of the document images produced by the Moto G9 smartphone.

4.2 Samsung A10S

The smartphone Samsung Galaxy A10S 6 was released around August 2019 and
became the second top selling device worldwide in December 2019 and it is still

S https://www.gsmarena.com /samsung_galaxy_al0s-9793.php
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Tryl-ng to prove formally what is seen intuitively and
to' see intuitively what is proved formally is an invigor-
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Condition is a principal part of a “problem to find.”
See PROBLEMS TO FIND, PROBLEMS TO PROVE, 3. See also
TERMS, NEW AND OLD, 2.

A condition is called redundant if it contains super-
fluous parts. It is called contradictory if its parts are
mutually opposed and inconsistent so that there is no
object satisfying the condition.

Thus, if a condition is expressed by more linear equa-

tions than there are unknowns, it is either redundant or
contradictory; if the condition is exPres_sed by fewer
equations than there are unknowns, it is insufficient to
determine the unknowns; if the condition is expressed
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Abwtract. The procecdings of many technical events in diffcrent areas of
Knowledge witness the history of the development of that arca. LiveMemory is
wuser friendly tool developed 1o generate digital librarics of event proceedings.
‘Thin puper describex the madule designed 1o perform content recogaition in

LiveMemory.

Keywords: Digual libiaries, image idexing. conlent extraction.

1 Introduction

LiveMemory is o software platform designed 1o generate digital libraries from pro-
ceedings of techmical events. Until toxday, only very few prestigious events have pro-
ceedings printed and widely distributed by interational publishing houses. Thus,

copien of the proceedings ure resticted 10 those who attended the event. In this case,
pist proceedings are dificult 10 obtnn and very ofien disappear; bringing gaps into
e history of the evolution of events and even rescarch arcas. The digital version of

proceedings, which started (o appear at the end of the 19%0°s, possibly made things
even wonse. Only conference attendees were able to obtain copies of the CDs of the
proceedings. LiveMemory was used to generate a digital library released in a DVD
containing the whole history of the 28 years of the proceedings of the Symposium of
the Brazilian Telecommunications Socicty, the most relevant academic event in the
arca in Latin America. The problems faced in the gencration of the SBrT digital li-
brary ranged from compensating paper aging elfects, filiering back-to-front noise (5],
comecting page orientation and skew during scunning, to image binarization and
compression, LiveMemory merges together proceedings that were scanned and vol-
umes that were already in digital form. The SBrT2008 digital library was organized
per year of the event.
“This paper outlines the functionality of the LiveMemory platform in general and
addresscs the way it recognizes the contents of the pages, making possible general
indexing of documents and better access Lo the information in the library. This
module works by getting information from two different sources. The first onc is the
image of the pages of the *Table of Contents" of the volume. The second one is each
paper page image. Besides those pages there are introductory pages such as the
history of the event, the address of the volume editor, etc. There may also be track or
session separation pages, remissive index, eic. Pages are segmented 1o find the block
arcas which pond 10 the i jon and then i via OCR. The

1.-M. Ogier, W. Liu, and ). Liadds (Eds.): GREC 2009, LNCS 6020, pp. 220-230, 2010.
© Springer-Verlag Berlin Heidelberg 2010

by just as many equations as there are unknowns it is

Fig. 2. Result of the binarization with MO, algorithm of an offset printed book page
with the strobeflash on (left) and, using Michalak, a deskjet printed document with
the stobeflash off (right), both acquired using the Motorola Moto G9

on sale today ” It originally runs an Android 9.0 (Pie), upgradable to Android 11,
One UI 3.1. The two assessments made here with the 61 binarization algorithms
yielded the data shown on Table 3 for the top 15 algorithms and allow to point
as global results:

— (i) best for printing and transmitting: Michalak — it has the best P,,.,. either

with flash on or off
— (ii) best for OCR: Michalak — it is the fastest among the smallest [Lg;s¢],

with value 0.98
— (iii) overall winner: Michalak — it is the best either for OCR or printing

and transmitting applications

The result of the binarization of two of the test images in the dataset used here
processed by Michalak algorithm may be seen in Figure 3.

4.3 Samsung S20

The Samsung Galaxy S20 is another Android-based smartphone designed and
manufactured by Samsung. It is the successor model to the successful Galaxy S10

" https://www.91mobiles.com/hub/best-selling-phone-q3-2019-iphone-xr-11-
samsung-galaxy-al0-a50/7pid=33347
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Table 3. Best binarization algorithms using Samsung A10S

Samsung A10S

OFF ON
# Alg. P.rr Time (s) Alg. P.rr Time (s)
1 Michalak 0.76 0.05 Michalak 0.76 0.03
2 MO, 0.91 1.95 MO, 0.91 1.86
3 MO, 0.92 0.04 MO, 0.92 0.03
4 MOs; 0.92 0.87 MO; 0.92 0.8
5 Bradley 0.94 0.24 Bradley 0.94 0.24
6 Bernsen 1.06 1.98 Bernsen 1.06 1.96
7 ElisaTV 1.16 6.13 ElisaTV 1.16 6.09
8 DocDLink 1.24 173.78  Yasin 1.24 1.29
9 Yasin 1.24 1.46 DocDLink 1.24 173.34
10 ISauvola 1.25 0.31 ISauvola 1.25 0.31
11 Gosh 1.27 80.84 Gosh 1.27 80.66
12 Howe 1.32 37.38 Howe 1.32 37.27
13 WX 1.35 174.81 WX 1.35 174.31
14  Wolf 1.38 0.18  Wolf 1.38 0.18
15 KS, 1.4 3.26 KS, 1.4 3.31
# Alg. [Lgist] Time (s) Alg. [Lgist] Time (s)
1 RNB 0.98 27.77 RNB 0.98 27.86
2 KS, 0.98 3.26 AH, 0.98 56.78
3 ElisaTV 0.98 6.13 KS, 0.98 3.31
4 JB 0.98 1.24 ElisaTV 0.98 6.09
5 ISauvola 0.98 0.31 JB 0.98 1.23
6 Bradley 0.98 0.24 ISauvola 0.98 0.31
7 AH, 0.98 59.22 AH, 0.98 257.38
8 Akbari; 0.98 15.27 Bradley 0.98 0.24
9 Jia-Shi 0.98 15.19 Akbari; 0.98 15.18
10 MOs; 0.98 0.87 Jia-Shi 0.98 15.22
11 Michalak 0.98 0.05 MO; 0.98 0.8
12 WAN 0.98 0.82 Michalak 0.98 0.03
13 KS; 0.97 3.49 WAN 0.98 0.83
14 YinYang 0.97 1.41 KS; 0.97 3.38
15 Gosh 0.97 80.84 SL 0.97 11627.4

and it was released on 11 February 2020 [21]. The analysis of the data presented
on table 4 allows one to pinpoint the “best” algorithms in the in terms of image
quality-time and OCR-performance and time, and the overall “winner” as:

— (i) best for printing: MO;.
— (ii) best for OCR: Michalak

— (iii) the overall “winner”: MOy, P,,, and the L4 are reasonably small.

Figure 4 shows the monochromatic version of two of the images in this dataset.
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Sie. daB man je dazu berechtigt ist. selbst Gerechtigkeit 74
iiben?"

Ieh erviderte. daB es eine ziemlich schwierige Frage sei, gie
ich aber im grofen und ganzen verneinen misse. Dazu sei das
Gesetz da. und diesem Gesetz miifiten wir uns fiigen.

.Selbst, wenn das Gesetz machtlos ist?*

Das verstehe ich nicht ganz.”

Es ist sehr schwierig zu erkldren. Aber man konnte einen
sehr guten und triftigen Grund haben fir eine Tat, die unbe-
dingtals verkehrt. ja sogar als einVerbrechen angesehen wird .«

Ich erwiderte ganz trocken. daB wahrscheinlich eine ganze
Reihe von Verbrechern dieser Ansicht gewesen seien. und sie
wich vor mir zuruck.

.Das ist aber schrecklich’. murmelte sie. .Schrecklich,"

Dann bat sie mich plotzlich in verandertem Ton um ein
Schlafmittel. Sie habe seit - sie zauderte ~. seit dem furchtba-
ren Schock nicht mehr richtig schlafen konnen.

,Sind Sie sicher. daB das der Grund ist? fragte ich. .Sonst
beunruhigt Sie nichts? Es lastet nichts auf Ihrer Seele?

JAuf meiner Seele? Was sollte auf meiner Seele lasten?

Sie stieB diese Worte heftig und miBtrauisch hervor.

\Angst ist manchmal die Ursache von Schlaflosigkeit'. sagte
ich leichthin.

Sie schien einen Augenblick zu gribeln.

Meinen Sie Angst vor der Zukunft oder Angst wegen der
Vergangenheit, die nicht mehr zu andern ist?"

,Beides!*

\Nur hitte es keinen Zweck. sich iber die Vergangenheit
zu beunruhigen. Sie ist unwiederbringlich — Oh! Was fiir cinen
Sinn hat es schon! Man darf nicht denken. Man darf nicht
nachdenken.*

ihr einen milden f und
dete mich. Beim Fortgehen dachte ich ziemlich lange iber die
Worte nach, die sie gesprochen hatte. ,Sie ist unwiederbring-
lich ... Was? Oder wer?

Ich glaube, diese letzte Unterredung bereitete mich gewis-
sermaBen auf die folgenden Ereignisse vor. die ich natiirlich
nicht erwartet hatte. Aber als sie eintraten. war ich nicht
iiberrascht. Ich hatte nimlich von Anfang an den Eindruck.

Computarional Intelligence, Volume -, Number 000, 2017
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- Eroving
I T, k. YA v g uch o o e nd rescaghers, ASes ch
el and oo v e exensively i o€l document summarzsion. Howeve, ol s fow
Klowel his paper proposes.

‘nd postion features o iltr out the lews important sentences and meavure the relevance of concepts (0 COMPOS

fiments conducted on four widely used benchmark datasets of the Document Understanding
") from 2001 10 2004 demonsizate the cflectiveness of the proposed approach compared with
other stae-of-the-ant summarizers.
Key words: Toxt summarization; Muli-document summarization; Concept-based inieger lineas pro-
gramming.

1. INTRODUCTION

The World Wide Web provides an unprecedented volume of textual information in most
several formats, on a wide variety of topics, with a large diversity of degree of accuracy,
and with a significant amount of information redundancy. Multi-document summarization
aims at automatically generating a summary containing the most relevant information from
a collection of related documents, providing the necessary technology 1o support people in
reducing their time to identify valuable information from a set of text documents. Besides
that, by comparing the di itcanalsoi jability of the information
provided in the summary. )

Due to those aspects, automatic multi-d ization has gained p
in recent years, and several approaches have been proposed, which can be classified into
two groups: Extractive or Absiractive. Extractive-based summarization methods (Baralis
et al., 2013a; Boudin et al., 2015) generate summaries by identifying and selecting the
most relevant sentences verbatim from the original documents and using them to create the
output summary. Whereas, the abstractive-based approaches (Banerjee et al., 2015; Khan
et al,, 2015) focus on the exploration of more complex natural language processing such as
sentence compression (Zajic et al., 2007), sentences fusion (Filippova, 2010), and natural
language generation (Genest and Lapalme, 2011). Although abstractive-based methods have

the potential to generate better quality summaries, closer to those produced by humans, such
thod hallengi iplex than the i ones.

120 “This article focuses on the generic ization, an based multi-d

summarization technique, applied to a specific kind of textual documents: news articles.
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Fig. 3. Result of the binarization with Michalak algorithm of an offset printed book
page with the strobeflash on (left) and a deskjet printed document with the strobeflash
off (right), adcquired using the Samsung A10S

4.4 Apple iPhone SE

The second-generation iPhone SE (also known as the iPhone SE 2 or the iPhone
SE 2020) is a smartphone designed and developed by Apple Inc. It was released
on April, 2020 and became one of the top selling smartphone models in 2020
(24.2 million devices sold).® It continues today as one of the top sold mid-price
devices. Table 5 presents the results for the assessment of this dataset. As one
can see, several “classical” binarization algorithms appear high-up in the quality
Pery rank, with very efficient time figures. Taking the formula Perryf¢  Topr +
Perry, x Ty as the way to decide the best algorithm for printing, MO, appears
top with 0.0972, closely followed by Michalak (0.1194) and Otsu (0,1316). Thus,
in this category the winner is MO;. The global results are:

— (i) best for printing and transmitting: MO,
— (ii) the best for OCR: MO,
— (iii) the overall winner: MO,

Figure 5 presents two of the imagesin this dataset binarized with the overall
“winner”.

8 https://www.gizmochina.com/2021/02/25/most-shipped-smartphones-2020-omdia,/
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Table 4. Best binarization algorithms using Samsung S20

Samsung S20

OFF ON
# Alg. P, Time (s) Alg. Perr Time (s)
1 MO, 0.91 0.05 Gattal 0.66 55.68
2 MOs; 0.92 1.09 IsoData 0.72 0.13
3 Bradley 0.96 0.31 Otsu 0.74 0.02
4  Michalak 0.99 0.05 MO, 0.79 0.04
5 DilatedUNet 1.06 151.65 Li-Tam 0.84 0.13
6 WX 1.13 279.6 Yasin 0.92 1.47
7 Howe 1.26 49.79 Gosh 0.95 102.95
8 DocDLink 1.27 228.22 MO; 0.96 0.98
9 Gosh 1.28 120.9 ElisaTV 0.97 7.46
10 KS; 1.28 3.79 Wolf 1.02 0.22
11 ‘Wolf 1.28 0.23 KS, 1.05 3.39
12 Yasin 1.28 1.75 Michalak 1.05 0.04
13 Singh 1.29 0.34 Bradley 1.05 0.29
14 MO. 1.33 2.49 Singh 1.06 0.32
15 Nick 1.37 0.16 Erginarp 1.06 0.62
# Alg. [Lgist] Time (s) Alg. [Lgist] Time (s)
1 MOs 0.98 1.09 Erginac 0.98 0.44
2 RNB 0.98 36.34 KSW 0.98 0.13
3 KS- 0.98 3.47 Yen-CC 0.98 0.13
4  Michalak 0.98 0.05 Bradley 0.98 0.29
5 ISauvola 0.98 0.41 MOs3 0.98 0.98
6 JB 0.98 1.43 SL 0.98 10319.87
7 Bradley 0.98 0.31 ElisaTV 0.98 7.46
8 WAN 0.98 1.07 IsoData 0.98 0.13
9 ElisaTV 0.98 7.68 Wolf 0.98 0.22
10 Bataineh 0.98 0.12 Su-Lu 0.98 1.62
11 YinYang 0.98 1.64 AH, 0.98 72.09
12 DocDLink 0.97 228.22 RNB 0.98 34.71
13 MO, 0.97 0.05 AH; 0.98 319.31
14 MO- 0.97 2.49 RenyEntropy 0.98 0.13
15 AH, 0.97 75.01 MO,/ Michalak 0.98 0.04

5 Conclusions

Smartphones have drastically changed the way of life of people worldwide with
their omnipresence, growing computational power and high-quality embedded
cameras. Photographing documents is now a simple way of digitizing everyday
documents and book pages for later referencing and even meeting legal require-
ments in many countries. Document binarization plays a key role in many doc-
ument processing pipelines, besides yielding smaller documents for storing and
sending via networks better readable and more economic to print. Recent docu-
ment binarization competitions [30] [27] [27] [31] show that no single algorithm is
the best for all kinds of documents. Each smartphone model has a camera with
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Fig. 4. Result of the binarization with MO, algorithm of an offset printed book page
with the strobe flash on (left) and a deskjet printed document with the stobeflash off
(right), acquired using the Samsung S20

different features making the binarization of photographed document images a
challenging task.

Applications that run on smartphones need to be light due to the hardware
limitations of a device that needs to execute several processes simultaneously.
Thus a binarization algorithm to be used in an embedded smartphone applica-
tion must have an excellent quality-time balance. This paper presents a method-
ology to choose such an algorithm. Four popular smartphone models of three
different manufacturers were quality-time assessed using 61 of the possibly best
binarization algorithms of today, pointing out the “best” algorithm for printing,
the “best” algorithm for OCR applications, and the global “winner” for each of
those devices.

The recent paper [26] shows that feeding binarization algorithms with the im-
age, their RGB-components or the grayscale converted image yield to differences
in their quality-time performance. That analysis would multiply the number of
the assessed algorithms by five, thus is left as one of the lines for further work.
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Table 5. Best binarization algorithms using Apple iPhone SE

Apple iPhone SE 2

OFF ON
# Alg. Perr Time (s) Alg. Perr Time (s)
1 Yasin 0.72 1.96 IsoData 0.60 0.12
2 Nick 0.79 0.17  Otsu 0.60 0.02
3 Sauvola 0.79 0.17 Sauvola 0.73 0.18
4  Singh 0.79 0.30 Gattal 0.74 54.59
5 Gosh 0.79 88.74  Gosh 0.77 85.64
6 JB 0.88 1.27  Yasin 0.81 1.55
7 YinYang 0.94 1.70 MO, 0.81 0.04
8 Wolf 0.95 0.23  Singh 0.81 0.29
9 KS, 0.96 4.23  Wolf 0.84 0.24
10 ElisaTV 1.04 5.00 Nick 0.84 0.17
11 Su-Lu 1.04 1.77 JB 0.85 1.27
12 MO, 1.08 0.06 ElisaTV 0.90 3.44
13 KS; 1.21 4.70 YinYang 0.94 1.78
14 Michalak 1.31 0.06 Michalak 1.02 0.04
15 Bradley 1.36 0.34 KS; 1.03 3.30
#  Alg. [Lust] Time (s) Alg. [Lgist] Time (s)
1 KS; 0.98 4.23 YinYang 0.98 1.78
2 Akbari; 0.98 21.76 SL 0.98 10,310.89
3 Jia-Shi 0.98 20.74  Yasin 0.97 1.55
4  Singh 0.98 0.30 KS, 0.97 3.39
5  Wolf 0.98 0.23  Singh 0.97 0.29
6 Wu-Lu 0.98 0.13 Nick 0.97 0.17
7 Bataineh 0.98 0.13 KS; 0.97 4.65
8 AH,; 0.98 277.31 Bataineh  0.97 0.13
9 ElisaTV  0.98 5.00 RNB 0.97 33.9
10 Calvo-Z 0.98 9.83 Erginacg 0.97 0.43
11 MO, 0.98 2.56 Howe 0.97 55.39
12 RNB 0.98 33.45 Li-Tam 0.97 0.13
13 Nick 0.98 0.17  MO. 0.97 2.28
14 MO, 0.98 0.06 Erginar 0.97 0.59
15 Bradley 0.98 0.34 DocDLink 0.97 191.72
37 Yen-CC 097 0.13 MO, 0.97 0.04
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usually just sufficient to determine the unknowns but
may be, in exceptional cases, contradictory or insufficient.

Contradictory. See CONDITION.

Corollary is a theorem which we find easily in examin-
ing another theorem just found. The word is of Latin
origin; a more literal translation would be “gratuity” or
“tip.”

Could you derive something useful from the data?
We have before us an unsolved problem, an open ques-
tion. We have to find the connection between the data
and the unknown. We may represent our unsolved prob-
lem as open space between the data and the unknown,
as a gap across which we have to construct a bridge. We
can start constructing our bridge from either side, from
the unknown or from the data.

Look at the unknown! And try to think of a familiar
problem having the same or a similar unknown. This
suggests starting the work from the unknown.

Look at the datal Could you derive something useful
from the data? This suggests starting the work from the
data.

It appears that starting the reasoning from the un-
known is usually preferable (see PAPPUS and WORKING
BACKWARDS). Yet the alternative start, from the data, also
has chances of success, must often be tried, and deserves
illustration.

Example. We are given three points 4, B, and C. Draw
a line through 4 which passes between B and C and is
at equal distances from B and C.

What are the data? Three points, 4, B, and C, are
given in position. We draw a figure, exhibiting the data
(Fig. 13).
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Abstract. The proceedings of many technical events in different arcas of
Knowledge witness the history of the development of that area. LiveMemory is
a user friendly tool developed to generate digital libraries of event proceedings.
This paper describes the module designed to perform content recognition in
LiveMemory.
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1 Introduction

LiveMemory is a software platform designed to generate digital libraries from pro-
ceedings of technical events. Until today, only very few prestigious events have pro-
ceedings printed and widely distributed by international publishing houses. Thus,
copies of the proceedings are restricted to those who attended the event. In this case,
past proceedings are difficult to obtain and very often disappear; bringing gaps into
the history of the evolution of events and even research areas. The (}lglml version of
proceedings, which started to appear at the end of the 1990's, possibly made things
even worse. Only conference attendees were able to obmn_ copies of the (;Ds of the:
proceedings. LiveMemory was used to generate a digital library released in a DVD)
containing the whole history of the 25 years of the proceedings of the Symposium of|
the Brazilian Telecommunications Society, the most relevant academic event in lh_e
arca in Latin America. The problems faced in the gcmm'ion of the SBIT dlgllal li
brary ranged from compensating paper aging effects, filtering back-to-front noise (5},
correcting page orientation and skew during scanning, to image binarization and
compression. LiveMemory merges together proceedings that were scanned and vol
umes that were already in digital form. The SBrT'2008 digital library was organizeq
per year of the event. 5 ) .

This paper outlines the functionality of the LiveMemory plslform in ;eneral an
addresses the way it recognizes the contents of the pages, _makfng puss5ble genera
indexing of documents and better access to the information in the hbmryA_Tm
module works by getting information from two different sources. ‘The first one is th(
image of the pages of the "Table of Contents" of the volume. The second one is eac
paper page image. Besides those pages there are introductory pages such as th
history of the event, the address of the volume editor, etc. There may also be track q
session separation pages, remissive index, etc. Pages are segmen_led o ﬁnd the bloc|
areas which to the i jion and then d via OCR. Th
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